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The paper deals with classification problems of Leibniz central extensions of linear
deformations of a Lie algebra.

For a Leibniz algebra L over C, let L1 = L and Lk+1 = [Lk, L]. L is said to be filiform
if dimLi = n− i, where n = dimL and 2 ≤ i ≤ n. The set of n-dimensional filiform
Leibniz algebras is denoted by Leibn. Let L ∈ Leibn+1; then it admits an adapted
basis {e0, e1, . . . , en} such that its multiplication table is of type FLeibn+1, SLeibn+1 or
TLeibn+1, using the notation from [J. R. Gómez and B. A. Omirov, “On classification
of complex filiform Leibniz algebras”, preprint, arXiv:math/0612735]. The first two
types in low dimensions are the subject of several papers [I. S. Rakhimov and U. D.
Bekbaev, Comm. Algebra 38 (2010), no. 12, 4705–4738; MR2805139; I. S. Rakhimov and
S. K. Said Husain, Linear Multilinear Algebra 59 (2011), no. 2, 205–220; MR2773651;
Linear Multilinear Algebra 59 (2011), no. 3, 339–354; MR2774088]. To discuss the
type TLeibn+1 it is necessary to consider first particular cases in order to proceed to
the general case. Along this line, the authors consider a subtype of TLeibn+1 denoted
by Ced(µn), corresponding to Leibniz algebras consisting of linear transformations of
µn, the n-dimensional filiform Lie algebras given by the brackets [ei, e0] = ei+1, i =
0, . . . , n− 1 in a basis {e0, . . . , en−1}, and their Leibniz central extensions.

The main results contain the conditions required for an (n+ 1)-dimensional filiform
Leibniz algebra with an adapted basis of type Ced(µn,) and isomorphism criteria for
such algebras for n ≥ 6. The isomorphism criteria for specific five- and six-dimensional
cases, i.e. Ced(µ4) and Ced(µ5), are provided. The final section contains a computer
program that generates multiplication tables for adapted bases.

José Manuel Casas Mirás
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